
DOI 10.1140/epja/i2006-10096-6

Eur. Phys. J. A 29, 337–342 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

Probing the convergence of perturbative series in baryon chiral
perturbation theory

D. Djukanovic1, J. Gegelia1,2,a, and S. Scherer1

1 Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
2 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

Received: 14 June 2006 / Revised: 28 August 2006 /
Published online: 22 September 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
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Abstract. Using the examples of pion-nucleon scattering and the nucleon mass we analyze the convergence
of perturbative series in the framework of baryon chiral perturbation theory. For both cases we sum up
sets of an infinite number of diagrams by solving equations exactly and compare the solutions with the
perturbative contributions.
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interactions

1 Introduction

Nowadays, mesonic chiral perturbation theory
(ChPT) [1–3] is widely accepted as the low-energy
theory of the strong interactions based on the underlying
symmetries of QCD. Impressive accuracy in the descrip-
tion of data has been achieved in the last decade [4–11].
Including baryons in ChPT turned out to be less straight-
forward [12] but still leads to a self-consistent framework.
Although there has been considerable progress in this
direction in recent years (see, e.g., ref. [13]), the issue
of the convergence of perturbative calculations in the
nucleon sector of the effective theory is still of great
interest.

To compare lattice calculations with experimental
data, one has to extrapolate the results to physical quark
masses. The preferred method to cope with this prob-
lem is to calculate the physical quantities as functions of
the quark masses in an effective field-theoretical approach
(see, e.g., [14–17]). Of course, these effective theories have
a limited range of applicability. The aim of this work is to
probe the issue of convergence of perturbative calculations
in BChPT. To that end we consider the contribution of
particular infinite sets of diagrams to the πN scattering
amplitude and to the nucleon self-energy. These contribu-
tions are summed up by solving integral equations ana-
lytically. For a related analysis of exact solutions to the
Bethe-Salpeter equations in BChPT in the SU(3) sector,
see ref. [18].

a e-mail: gegelia@kph.uni-mainz.de

Throughout this paper we use dimensional regular-
ization in combination with the infrared renormalization
scheme [19,20]1 without explicitly showing the counter-
terms responsible for the subtractions of loop diagrams.

2 Pion-nucleon scattering

First, let us specify the Lagrangians required for the pur-
poses of this work. From the mesonic sector we need the
lowest-order Lagrangian of the SU(2) sector [2]:

L2 =
F 2

4
Tr
(

∂µU∂µU †)+
F 2M2

4
Tr
(

U † + U
)

, (1)

where U is a unimodular unitary matrix containing the
Goldstone boson fields. In eq. (1), F denotes the pion-
decay constant in the chiral limit: Fπ = F [1 + O(m̂)] =
92.4MeV. Here, we work in the isospin-symmetric limit
mu = md = m̂, and the lowest-order expression for the
squared pion mass is M2 = 2Bm̂, where B is related to
the quark condensate 〈q̄q〉0 in the chiral limit [2]. Next,
the nucleon fields are collected in an isospin doublet

Ψ =

(

p
n

)

with two four-component Dirac fields p and n describing
the proton and neutron, respectively. From the nucleon

1 The EOMS renormalization scheme of ref. [21] leads to sim-
ilar results.



338 The European Physical Journal A

p1

q1 , a

p2

q2 , b

= p1

q1 , a

p2

q2 , b

+ p1

q1 , a

p2

q2 , b

Fig. 1. Equation for the pion-nucleon scattering amplitude.

sector we need the leading-order Lagrangian omitting ex-
ternal sources

L(1)
πN = Ψ̄

(

iγµD
µ −m+

1

2

◦
gA γµγ5u

µ

)

Ψ, (2)

where

DµΨ =
(

∂µ + Γµ
)

Ψ, u2 = U,

uµ = iu†∂µUu†, Γµ =
1

2

[

u†, ∂µu
]

,

and m and
◦
gA refer to the chiral limit of the physical

nucleon mass and the axial-vector coupling constant.
Let us consider elastic πN scattering with p1, q1

the four-momenta of the incoming and p2, q2 the four-
momenta of the outgoing nucleons and pions, respectively
(see fig. 1). The corresponding vertex function (amputated
Green’s function) can be obtained by solving the integral
equation

Γ ba (p2, q2; p1, q1) = V ba (p2, q2; p1, q1)

+

∫

dnk

(2π)n
V bc (p2, q2; p− k, k)

× G(p−k, k)Γ ca(p−k, k; p1, q1), (3)

where p = p1 + q1. V
ba stands for the πN effective poten-

tial and G(p−k, k) is the product of the (dressed) nucleon
and pion propagators. Here, the effective potential is de-
fined as the sum of all diagrams contributing to the vertex
function, which cannot be reduced to two πN scattering
diagrams by cutting one pion line and one nucleon line.

The standard representation for the vertex function in
terms of isospin symmetric and antisymmetric parts reads

Γ ba = δba Γ+ +
1

2

[

τ b, τa
]

Γ−. (4)

For our purposes it is convenient to decompose the scat-
tering amplitude in isospin-invariant components

Γ 3/2 = Γ+ − Γ−,

Γ 1/2 = Γ+ + 2Γ−. (5)

These vertex functions satisfy the integral equations writ-
ten symbolically as

Γ I = V I + V I GΓ I , (6)

where I = 1/2 or 3/22 and

V 3/2 = V + − V −,

V 1/2 = V + + 2V −.

V ba = δba V + +
1

2

[

τ b, τa
]

V −. (7)

2 Everywhere below the index I can take one of the two
values 1/2 and 3/2.

Suppose the potential can be written as

V I (p2, q2; p1, q1) =
(

1 q2/
)

(

vI11 vI12

vI21 vI22

)

(

1
q1/

)

, (8)

where the vIij depend only on p = p1 + q1 = p2 + q2 as is

the case, e.g., for the potential3

V ba (p2, q2; p1, q1) = −
εbacτ c

4F 2

(

q1/ + q2/
)

− i
◦
gA

2
τ bτa

4F 2

q2/
(

p/ −m
)

q1/

p2 −m2
. (9)

In this case the vertex functions Γ I can also be written as

Γ I (p2, q2; p1, q1) =
(

1 q2/
)

(

τ I11 τ I12

τ I21 τ I22

)

(

1
q1/

)

. (10)

Substituting eqs. (8) and (10) in eq. (6) results in the
following matrix equations:

τ I = vI + i vI g τ I , (11)

where

g = i

∫

dnk

(2π)n

(

1
k/

)

G(p− k, k)
(

1 k/
)

=

(

g11 g12

g21 g22

)

. (12)

For the undressed propagator

G(p− k, k) =
i

p/ − k/ −m+ i 0+

i

k2 −M2 + i 0+
, (13)

we obtain

g11 = mINπ(−p, 0) + p/
[

INπ(−p, 0)− I
(p)
Nπ(−p, 0)

]

,

g12 = g21=
(

p2+mp/
)

I
(p)
Nπ(−p, 0)−M2 INπ(−p, 0)−IN ,

g22 = p/
(

p2 −m2
)

I
(p)
Nπ(−p, 0)−M2 (p/ −m)

×INπ(−p, 0)− (p/ −m) IN . (14)

The loop integrals INπ(−p, 0), IN , and I
(p)
Nπ(−p, 0) are

given in the appendix.

3 Equation (9) corresponds to the Weinberg-Tomozawa term
plus the s-channel nucleon-pole diagram obtained from the La-
grangian of eq. (2). Note that the u-channel nucleon-pole dia-
gram cannot be written in the form of eq. (8).
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Fig. 2. Differential cross-section for π−p→ π0n scattering in
forward direction. The solid and dashed lines correspond to the
non-perturbative and perturbative (tree plus one-loop order)
results, respectively.
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Fig. 3. The sum of the differential cross-sections for the pro-
cesses π−p → π−p and π−p → π0n in forward direction. The
solid and dashed lines correspond to the non-perturbative and
perturbative (tree plus one-loop order) results, respectively.

Decomposing the matrices as

vI = vIs + p/ vIv ,

g = gs + p/ gv ,

τ I = τ Is + p/ τ Iv , (15)

and substituting the result in eq. (11) we obtain

τ Is = vIs + i vIs gs τ
I
s + i p2 vIs gv τ

I
v + i p2 vIv gs τ

I
v

+i p2 vIv gv τ
I
s ,

τ Iv = vIv + i vIv gs τ
I
s + i vIs gv τ

I
s + i vIs gs τ

I
v

+i p2 vIv gv τ
I
v . (16)

If we define

vI± = vIs ±
√

p2 vIv ,

g± = gs ±
√

p2 gv ,

τ I± = τ Is ±
√

p2 τ Iv , (17)

1.1 1.15 1.2 1.25 1.3 1.35

√s [GeV] 

1

3

5

7

d
σ
 

 
 
 
 

 
 

d
θ
[
m
b
]

1.1 1.15 1.2 1.25 1.3 1.35

1

3

5

7

Fig. 4. Differential cross-section for π+p→ π+p scattering in
forward direction. The solid and dashed lines correspond to the
non-perturbative and perturbative (tree plus one-loop order)
results, respectively.

and substitute in eq. (16) the resulting equations reduce
to the decoupled system

τ I± = vI± + i vI± g± τ I± . (18)

Equations (16) and (18) are systems of matrix equations
and can be solved exactly. Inserting the solutions in

τ+
s =

1

3

(

2 τ3/2
s + τ1/2

s

)

,

τ+
v =

1

3

(

2 τ3/2
v + τ1/2

v

)

,

τ−s =
1

3

(

τ1/2
s − τ3/2

s

)

,

τ−v =
1

3

(

τ1/2
v − τ3/2

v

)

, (19)

and using the most general parity-conserving form for the
on-shell T -matrix,

T± = A± +
1

2

(

q1/ + q2/
)

B±, (20)

one can calculate the four Lorentz-invariant amplitudes as

A± = τ±s;11 +
(

M2 + 2 p1 · q1

)

τ±s;22 +mN τ±v;11

+2
(

M2+2 p1 ·q1

)

τ±v;12−mN

(

M2+2 p1 ·q1

)

τ±v;22,

B± = 2 τ±s;12 − 2mN τ±s;22 + τ±v;11 − 2mN τ±v;12

+
(

2m2
N +M2 + 2 p1 · q1

)

τ±v;22. (21)

On the other hand, by expanding eqs. (21) perturbatively
we can compare the results of the term-by-term loop ex-
pansion with the non-perturbative expression and esti-
mate the error of the perturbative approximation for var-
ious kinematics.

We calculated exactly (as closed expressions of one-
loop integrals) the non-perturbative (re-summed) contri-
bution and the tree plus one-loop order contributions to
the π−p → π0n, π−p → π−p, and π+p → π+p scattering
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Fig. 5. Contribution to the nucleon self-energy.

processes for the potential due to the Weinberg-Tomozawa
term,

V ba (p2, q2; p1, q1) = −
εbacτ c

4F 2

(

q1/ + q2/
)

. (22)

The results for differential cross-sections are given
in figs. 2-4. These figures suggest that the pertur-
bative results (tree plus one-loop order) approximate
the re-summed contributions very poorly already for
s = p2 ∼ m2

∆.

3 Nucleon self-energy

The full (dressed) nucleon propagator has the form

i S(p) =
i

p/ −m−Σ(p/)
, (23)

where the nucleon self-energy −iΣ(p/) represents the one-
particle-irreducible contribution to the two-point func-
tion. The nucleon self-energy contains the contributions
of counter-terms so that m corresponds to the nucleon
pole mass in the chiral limit.

The physical mass mN of the nucleon is defined as the
solution to the equation

S−1 (mN ) = mN −m−Σ (mN ) = 0. (24)

Analogous to the analysis in sect. 2 we calculate the con-
tribution of an infinite set of diagrams (shown in fig. 5) to
the nucleon mass and compare the non-perturbative result
with the first terms in its perturbative expansion. We also
compare the non-perturbative result with the leading non-
analytic one-loop contribution (δm3). All the diagrams in
fig. 5 are of higher order and if the series converges, the
absolute value of the non-perturbative result is suppressed
with respect to δm3.

The sum of diagrams in fig. 5 can be written in a closed
form as

−iΣ = −
◦
gA

2

4F 2

∫∫

dnq1

(2π)n
dnq2

(2π)n
γ5 q2/

1

p/ − q2/ −mN

× τ b Γ ba (p2 − q2, q2; p1 − q1, q1) τa
1

p/ − q1/ −mN
γ5q1/

× 1
[

q2
1 −M2 + i 0+

][

q2
2 −M2 + i 0+

] , (25)

where the πN vertex function Γ ba is obtained by solving
eq. (3) with the potential

V ba (p2, q2; p1, q1) = −
εbacτ c

4F 2

(

q1/ + q2/
)

. (26)

It is easily verified that Σ depends only on Γ 1/2. Using the
solution for Γ 1/2 from the previous section in eq. (25) and
integrating over q1 and q2 we obtain an analytic expression
for the contribution of the diagrams in fig. 5 to the nucleon
mass

δm = −3
◦
gA

2

4F 2

N

D
, (27)

where

N = (m+mN )
(

4F 2 − Iπ
)

[

(mN −m) Iπ

−
(

m2 −M2 − 2mmN +m2
N

)

(m+mN ) INπ

]2

,

D = 2mN

{

8mN F 4 + 4

[

(m−mN ) Iπ

+
(

m2 −M2 − 2mmN +m2
N

)

(m+mN ) INπ

]

F 2

+ Iπ

[

(mN −m) Iπ −
(

m2 −M2

−2mmN +m2
N

)

(m+mN ) INπ

]

}

. (28)

On the other hand, by expanding eq. (27) in powers
of 1/F 2 we can identify the contributions of each di-
agram separately. Using the IR renormalization scheme
and substituting m = 882.8MeV [22], mN = 938.3MeV,

F = 92.4MeV,
◦
gA= 1.267 and M = 139.6MeV we obtain

δm = −0.00233530MeV = (−0.00230219
−0.00003305− 0.00000007 + · · · )MeV. (29)

As can be seen from eq. (29) the first term in the perturba-
tive expansion reproduces the non-perturbative result well
and the higher-order corrections are clearly suppressed.

It is relevant for the chiral extrapolation of lattice
data to consider the nucleon mass for larger values of the
quark masses. Therefore in fig. 6 we plot δm of eq. (28)
together with the contribution of the first diagram in
fig. 5 as functions of M . To estimate the values of the
quark/pion masses for which the higher-order terms be-
come comparable with lower-order contributions we also
plot the leading non-analytic correction to the nucleon
mass δm3 = −3 g2

AM3/(32π F 2) [12,23,24]. As can be
seen from this figure, up to M ∼ 500MeV the non-
perturbative sum of higher-order corrections is suppressed
in comparison with the δm3 term. Also, the leading-higher
order contribution reproduces the non-perturbative re-
sult quite well. On the other hand, for M & 600MeV
the higher-order contributions are no longer suppressed in
comparison with δm3.
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Fig. 6. Contributions to the nucleon mass as functions of M .
The solid, dashed, and dash-dotted lines correspond to δm3,
δm, and the contribution of the two-loop diagram in fig. 5,
respectively.

4 Summary and discussion

In this work we have addressed the issue of convergence
of perturbative calculations in BChPT by analyzing pion-
nucleon scattering and the nucleon mass. By solving the
equation for the πN vertex function using dimensional
regularization we have obtained an exact expression for a
sum of an infinite number of loop diagrams. The solution
is given in a closed form in terms of one-loop integrals. We
have renormalized the obtained non-perturbative expres-
sion by applying infrared renormalization [19]. We com-
pared the perturbative contributions with the re-summed
expression for elastic πN scattering. We find that already
for s ∼ m2

∆ the perturbative results approximate the re-
summed non-perturbative expression very poorly. As the
potential, which has been iterated by solving the equa-
tion does not receive contributions from the intermediate
∆ state, we conclude that the inclusion of the ∆ as an
explicit degree of freedom does not solve the problem of
convergence of the considered loop contributions. In our
opinion, to solve this problem one needs to include the
∆ degrees of freedom [25–27] and simultaneously consider
the πN scattering equations.

Next, using the non-perturbative result for the πN
scattering amplitude we have obtained an exact expres-
sion corresponding to a sum of an infinite number of di-
agrams contributing to the nucleon self-energy. Using the
infrared renormalization scheme and comparing the non-
perturbative contribution to the nucleon mass with contri-
butions of the first several terms in its perturbative expan-
sion we conclude that the so obtained perturbative series
for the nucleon mass converges very well. We also consid-
ered the correction to the nucleon mass for larger values of
quark masses and found that the re-summed higher-order
contributions become larger than the leading non-analytic
contribution for M & 600MeV. From this we conclude
that for such values of M BChPT cannot be trusted in
extrapolations of lattice data. Even if there are large can-
celations these cannot be treated systematically in stan-
dard BChPT. As we have summed up only a subset of
higher-order diagrams, our analysis is not complete and

therefore our result should be considered as an estimate
for an upper limit of the radius of convergence.

We would like to thank D. Leinweber for useful comments on
the manuscript. The work of D.D. and J.G. was supported by
the Deutsche Forschungsgemeinschaft (SFB 443).

Appendix A.

One-loop integrals:

IµNπ(−p, 0) = pµ I
(p)
Nπ(−p, 0)

= i

∫

dnk

(2π)n
kµ

[(k − p)2 −m2 + i0+][k2 −M2 + i0+]

=
pµ

2p2

[(

p2 −m2 +M2
)

INπ(−p, 0) + IN − Iπ
]

,

Iπ= i

∫

dnk

(2π)n
1

k2 −M2 + i0+
=2M2λ̄+

M2

8π2
ln

(

M

m

)

,

IN = i

∫

dnk

(2π)n
1

k2 −m2 + i0+
= 2m2 λ̄,

INπ(−p, 0)= i

∫

dnk

(2π)n
1

[(k−p)2−m2+i0+][k2−M2+i0+]

=2 λ̄+
1

16π2

[

−1+ p2−m2+M2

p2
ln

(

M

m

)

+
2mM

p2
F (Ω)

]

,

(A.1)

where

λ̄ =
mn−4

(4π)2

{

1

n− 4
− 1

2
[ln(4π) + Γ ′(1) + 1]

}

,

F (Ω) =
{√

1−Ω2 arccos(−Ω), −1≤Ω≤1,
√
Ω2−1 ln

(

Ω+
√
Ω2−1

)

−iπ
√
Ω2−1, 1≤Ω,

Ω =
p2 −m2 −M2

2mM
.

Infrared renormalized expression for INπ(−p, 0):

IIRNπ(−p, 0) =

1

16π2

p2 −m2 +M2

2 p2

[

2 ln

(

M

m

)

−1

]

+FIR(Ω), (A.2)

where

FIR(Ω) =






















1
8π2

mM
p2

√
1−Ω2 arccos

(

− α+Ω√
1+2αΩ+α2

)

, −1≤Ω≤1,

− 1
16π2

mM
p2

√
Ω2−1 ln α+Ω−

√
Ω2−1

α+Ω+
√
Ω2−1

− i
8π

mM
p2

√
Ω2−1,

1 ≤ Ω,

and α = M
m .

INπ = INπ(−p, 0)|p2=m2

N

. (A.3)
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